INTEGRATION VON E-MOBILITÄT IM GEWERBE UND AUSLEGUNG VON ZUKÜNFTIGEN PV-EIGENVERBRAUCHSSYSTEMEN

Pre-Workshop zum VDE-Forum, Kassel

Dr. Jan von Appen

Fraunhofer Institut für Energiewirtschaft und Energiesystemtechnik IEE

Motivation (1)

Digitalisierung und Sektorkopplung eröffnen neue Möglichkeiten für energiewendegerechtes Energiemanagement.

Smart home

Interoperabilität

Schnittstellen Open source

Flexibilität Datensicherheit

Gebäudeautomatisierung

IoT Optimierung Smart grid

ML Al Mehrwertdienste
Usability Kundenbindung

Smart meter


Bildquellen: Tesla, SMA, Vaillant

Motivation (2)

Kundenorientierte Energieplattformen ermöglichen neue Interaktionskonzepte für EE-Integration und Energieeffizienz.

- Digitale Energieberatung:
 - Elektromobilität
 - EE-basierte Strom-Wärme-Speicher-Systeme

 Verbesserte EE-Integration und Energieeffizienz durch Verhaltensadaption und Automatisierung

Agenda

- Integration von Elektromobilität in Gewerben
- Auslegung von zukünftigen Eigenverbrauchssystemen
- social energy management

Elektromobilität – Motivation

Digitalisierung und E-Mobilität bieten neue Chancen für Energiemanagement in Hotels.

Herausforderungen:

- Umsatzwachstum
- Kostendruck
- Gastzufriedenheit

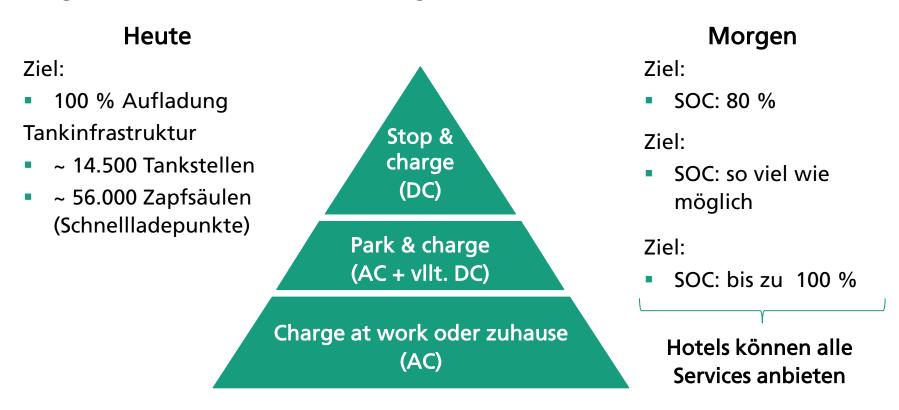
IT- Infrastruktur und Energiemanagement:

- Silos bei Softwaresystemen
- Kaum Energiemanagement

Digitale Gastinteraktion

Energiemanagement

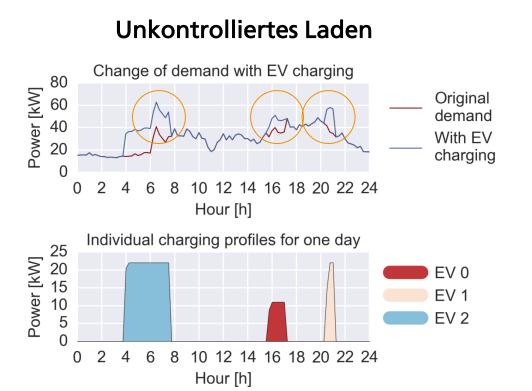
E-Mobilität



Betterspace-Plattform und Fraunhofer IEE-Applikationen für optimale Integration von Elektromobilität in Hotels.

Elektromobilität – Ladeinfrastruktur in Hotels?

Die 44.000 Hotels in Deutschland können eine Schüsselrolle beim Angebot von Ladedienstleistungen einnehmen.



Optimaler Mix aus Ladepunkten ist notwendig.

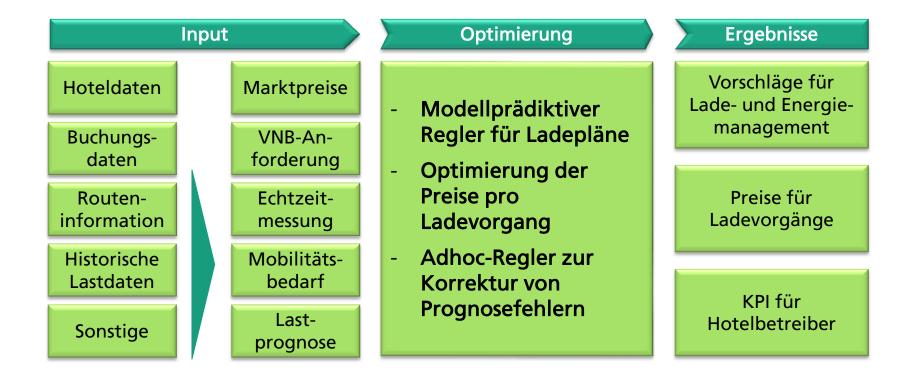
Quelle: EnBW, Destatis, ADAC, KBA, DEHOGA

Elektromobilität – Kundenanforderungen

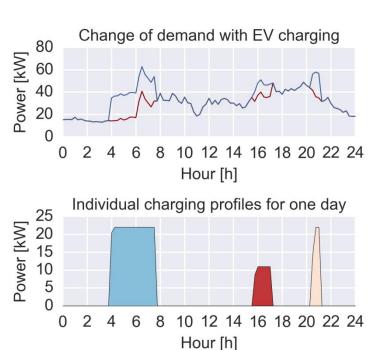
Leistungskosten sind ein entscheidender Kostenblock im Hotelgewerbe.

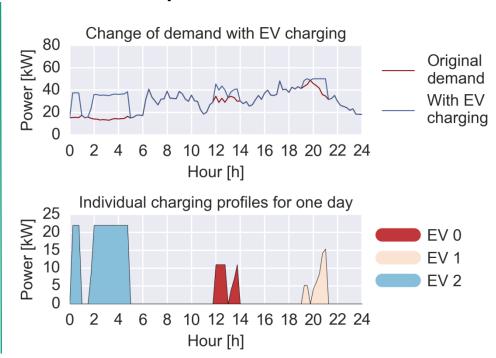
Gasterlebnis

- Keine zusätzlichen Hürden
- Einfache Reservierung
- Attraktive Preise für optimiertes Laden


Es bedarf eines angepassten Energiemanagements zur optimierten E-Mobilitätsintegration in Hotels

Elektromobilität – Energiemanagementlösung des IEE


Die kundenorientierte Energiemanagementlösung ermöglicht eine kostenminimale, optimierte Auslastung der Ladesäulen im Hotel.

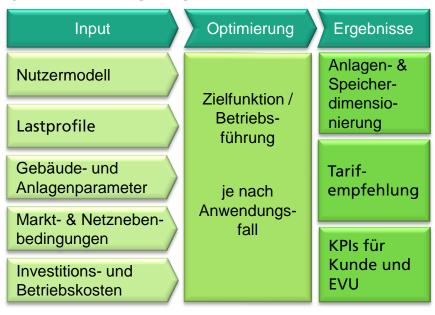

Elektromobilität – Beispielergebnisse für optimiertes Lademanagement

Leistungsspitzen können durch optimiertes Lademanagement und Einbindung in Hotel-IT-Prozesse minimiert werden.

Unkontrolliertes Laden

Optimiertes Laden

Potenzial zur Bereitstellung von neuen Tarifen und Services


Agenda

- Integration von Elektromobilität in Gewerben
- Auslegung von zukünftigen Eigenverbrauchssystemen
- social energy management

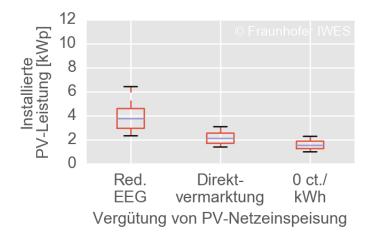
Eigenverbrauchssysteme – Optln-Tool zur optimierte Systemauslegung

Der Einsatz des OptIn-Tools kann eine effiziente Identifizierung von Investoren in dezentrale Energiesysteme ermöglichen.

OptIn-Tool zur ökonomisch-effizienten Systemauslegung von DEA

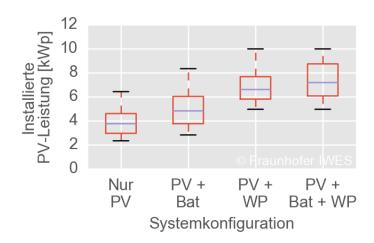
Beispiel-Analyse:

- Zukünftige PV-Eigenverbrauchssysteme in Einfamilienhäusern:
 - Bestimmung optimaler PV-Anlagengrößen mit Batterien und/oder Wärmepumpen
 - Analyse von Wechselwirkungen zwischen Anreiz und Auslegung



Bewertung des Einflusses von Unsicherheit auf die Investitionsentscheidung

Eigenverbrauchssysteme – Beispielanalysen


Um das PV-Dachflächenpotenzial voll auszuschöpfen, bedarf es gezielter Anreize und erhöhter Sektorkopplung.

Einfluss der Vergütung der PV-Netzeinspeisung auf PV-Anlagengröße*

Dachflächenpotenzial wird ggf. in einer Post-EEG nicht ausgeschöpft

Einfluss von Speichern und Wärmepumpen auf die PV-Anlagegröße*

Sektorkopplung als Vehikel, um größere Anlagengrößen zu erreichen

*Quelle: Appen (2016)

Agenda

- Integration von Elektromobilität in Gewerben
- Auslegung von zukünftigen Eigenverbrauchssystemen

social energy management

sema – Einführung

sema soll zu bewussterem Energiebezug intrinsisch motivieren und Energieeinsparungen vereinfachen.

Konzept sema (social energy management):

- Community zum Vergleich des Energieverbrauchs:
 - Online-Community
 - Bereitstellung von personalisierten Energiereports
- Gamification durch Feedback zu und Punkte für Energieverhalten:
 - Stromverbrauch:
 - Viel EE-Erzeugung = hohes sema-Level
 - Mehr Punkte bei Stromverbrauch während hoher sema-Level
 - Motivation zur verbesserten EE-Nutzung
 - Wärmebedarf:
 - Punkte für anwesenheitsorientiertes Heizen und Lüftverhalten
 - Motivation zur Reduktion des Wärmebedarfs

sema – Systemumgebung und Feldtest

Aktuell läuft ein sema-Feldtest mit 80 Personen im Dauertest.

Bildquelle: Engel (2018)

sema – OGEMA

sema basiert auf dem IEE-Betriebssystem für Energiemanagement und Gebäudeautomatisierung OGEMA.

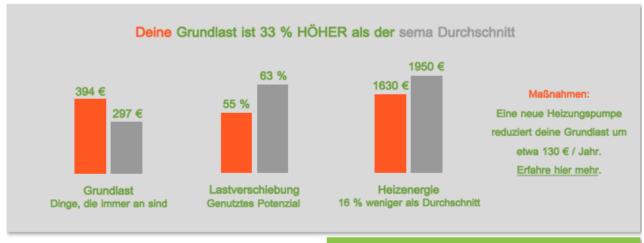
Public Software Plattform

- Open-Source Framework
- Entwickelt von Fraunhofer IEE, IIS und ISE
- Eingesetzt in über 20 nationalen und internationalen Forschungsprojekten
- 2 IEE-Ausgründungen basierend auf OGEMA
- Schnittstellen öffentlich dokumentiert/zugänglich

Laufzeit-Umgebung

- Java / Eventbasiert
- Software Development Kit
- IT Security und Datenschutz

Modulares EM-System


- Schnelle, effiziente Entwicklung neuer Module
- Wiederverwendung existierender Module
- Management via OGEMA Appstore

sema – Beispiel Energiereport

Personalisierte Energiereports sorgen dafür, dass die Teilnehmer übersichtlich über ihren Energieverbrauch informiert werden.

Quelle: Dörre(2018)

Zusammenfassung und Ausblick

Elektromobilität

- E-Mobilität als Chance für neue Dienstleistungen im Gewerbe
- Kombination aus Energiemanagement und Bestands-IT-Systemen ermöglicht kundenspezifische Lösungen zur optimierten Integration von E-Mobilität

Eigenverbrauch und Energieberatung

- Datenbasierte Energieberatungsdienste für gezielte Identifikation von Investoren in dezentrale Strom-Wärme-Speicher-Systeme und Elektromobilität
- Sektorkopplung als Vehikel für attraktive dezentrale Energiesysteme

sema

- Motivation zu bewussterem Energiebezug bei EE-Erzeugung und Energieeinsparungen durch Gamification und Community
- Plattform als Möglichkeit zum Ausrollen weiterer Dienstleistungen

Kontaktdaten:

Dr. Jan von Appen

- Geschäftsfeldleiter Dezentrales Energiemanagement
- Mail: <u>jan.vonappen@iee.fraunhofer.de</u>

Quellen und Literaturempfehlungen

- S. Engel, D. Nestle, E. Dörre, J. Appen, "sema Erkenntnisse aus dem Betrieb eines social energy management system", 15. Symposium Energieinnovation, 14.-16.02.2018, Graz
- J. Appen, N. Gerhardt, C. Pape, B. Lehde und J. Schmiesing, "PV-Eigenstromverbrauch: Treiber oder Bremse des PV-Zubaus?", BWK - Das Energie-Fachmagazin 12 - 2016 (2016), 47ff.
- www.ogema.org

