Fraunhofer Institute for Wind Energy and Energy System Technology

Department Network Technology and Integration

Dr. Thomas Degner

(Head of Department)

Fraunhofer IWES, Königstor 59, 34119 Kassel / Germany

Email: thomas.degner@iwes.fraunhofer.de

Phone: +49 (0) 561 7294-232, <u>www.iwes.fraunhofer.de</u>

- Infrastructure
 - Test Laboratories

Department Network Technology and Integration

Department
Network
Technology and
Integration

Head: Dr. Thomas Degner

Power Quality and Grid Connection

Dr. Gunter Arnold

Power System Control and Dynamics

Dominik Geibel

Protection and Controls for Power Distribution

Dr. Thomas Degner (temporary)

Rural Electrification and Hybrid systems

Dr. Thomas Degner (temporary)

Topics

- Grid Code and Grid Connection Requirements
- Conformance Tests
- Model Validation
- Measurements of Grid Characteristics
- Grid-Design, Grid Planning and Consulting

Topics

- Power System
 - Simulation
 - Stability Analysis
- Control development
 - Grid Control
 - Micro Grids
 - Hybrid Grids
 - DER units
- Hardware in the Loop
 - CHiL and PHiL

Topics

- Network Protection
- Communication and Control
 Technologies for Power Systems
- Grid Operation

Topics

- Rural Electrification
- Hybrid Systems (Planning and Design)
- Pilot- and Demonstrationprojects

Department Grid Technology and Integration:

Experimental Infrastructure

- DeMoTec Design-Center for modular system technology
- Accredited Test Laboratory for Electromagnetic Compatibility (EMC) according to IEC 17025
- European Network of DER Laboratories DERIab

SysTec – Test Centre for smart grids and electro-mobility

SysTec - Test Centre for Smart Grids

Testing Capacity

 Accredited for grid code compliance testing

Deutsche Akkreditierungsstelle GmbH

Anlage zur Akkreditierungsurkunde D-PL-11140-13-01 nach DIN EN ISO/IEC 17025:2005

Gültigkeitsdauer: 18.04.2013 bis 17.04.2018

Ausstellungsdatum: 18.04.2013

Urkundeninhaber:

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Fraunhofer IWES Institutsteil Kassel

Wilhelmshöher Allee 73, 34121 Kassel

Prüfungen in den Bereichen:

Elektromagnetische Verträglichkeit (EMV)

Messung der elektrischen Netzeigenschaften von Stromrichtern und Erzeugungsanlagen Messung des Wirkungsgrads von photovoltaischen Systemen und Stromrichtern

- Measurements of static and dynamic properties of the grid interface of generation units and plants
 - Low Voltage up to 1.25 MVA
 - Medium Voltage up to 6 MVA
- Bidirectional AC Supply up to 1 MVA
 - 100 900 V @ 650 A/ 100 450 V @
 1300 A, frequency range 45 65 Hz
- Controllable DC source up to 1 MVA
 - 1000V@(5*150+1*250) A, interconnection up to 4 kV

SysTec - Testing Laboratory for Grid Integration (PNI) Electrical Set-up

 Development- and Test Facility for quasi-stationary and dynamic testing of the grid interface of DER units and Systems (low- and medium voltage)

Quasi-stationary Properties Low Voltage

- Control of voltage and frequency at LV level
 - Connection of single DER units
 - Connection of LV grid sections
 - Interfaces for integration in a HIL System
- Bidirectional High Power AC Supply from Gustav Klein
 - Power Range ≤ 1 MVA
 - 100 900 V @ 650 A
 - 100 450 V @ 1300 A
 - Range of frequency 45 65 Hz

Quasi-stationary Properties Medium Voltage

- Utilization of signal generators
- Defined generation of signals given to the secondary technology of the developed and tested equipment
- No need for complex grid simulators to simulate quasi-stationary MV operating states

Dynamic Properties LV and MV (1)

- Rating of the mobile test system
 - Power range: 0.25 MVA to 6 MVA
 - Voltage levels: 10 kV, 20 kV
 - Frequency: 50 Hz
 - Short circuit power range: 80 MVA to 350 MVA
 - Ambient Temperature : -25 to +60 °C
 - Operation temperature: 0 to +50 °C
 - 40-foot sea container

Dynamic Properties LV and MV (2)

- Utilization of MV LVRT container also for testing of LV equipment
 - Different tested LV equipment may have differing rated voltages
- Tap transformer for coupling

- Rated power: 1.25 MVA
- Voltage tapings
 - 7 voltage steps at secondary side and primary tappings of ± 5*1%
 - 230 V 725 V

Lab facilities - DC source for supply of EUT

DC supply for equipment under test (EUT)

- PV inverters
- Batteries
- Fuel cells

Controllable DC source

- Magna Power Electronics MT Series V
- Modular set-up
 - 5 units of 150 kW (1000V @ 750 A)
 - 1 unit of 250 kW (1000V @ 250A)
- Variable parallel and serial interconnection possible (up to 4 kV)

Central Control and Data Acquisition

- Control of the Facility from a central room
 - Control of the MV switch gear via IFC 61850
- Central Data acquisition
 - Application of a new measurement module with extended power quality recording possibilities
- Interface for the Integration of Matlab / Simulink Applications e.g. for Online-Simulations

Department Grid Technology and Integration:

Services (Selection)

- Accredited testing of generation units and certification of generation plants according to grid connection guidelines
- Metrological examination of performance (tripping characteristic) of protection devices for distribution grid components
- Measurements of power quality and analysis of performance
- Investigation of new network control systems
- Investigation of network control characteristics of photo-voltaic systems, grid-integrated storage systems, biogas plants, CHP plants etc.

- Generation of defined network conditions in low voltage electricity networks
- Test of devices and components in a system context (in combination with power hardware in the loop systems)
- Modeling and simulation of grid characteristics of generation units and generation plants

